
 

 

 

 

Medexter Healthcare GmbH, Borschkegasse 7/5, 1090 Vienna, Austria, Telephone  

+43-1-968 03 24, Facsimile +43-1-968 09 22 www.medexter.com, Handelsgericht Wien: 

FN 225564m, UID: ATU54901101, IBAN: AT602011128014988900, BIC: GIBAATWW 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

  

Date: 9 June 2023 

Version: 1.6 

 

Medexter Healthcare  

ACHIEVING FHIR 
CONNECTIVITY IN ARDEN 
SYNTAX USING THE 
ARDENSUITE FHIR 
CONNECTOR 

 
 



 

 

page 1 of 10 

SUMMARY 2 

DOCUMENT INFORMATION 2 

TARGET AUDIENCE 2 

IMPRINT 2 

INTRODUCTION 3 

REQUIREMENTS 3 

THE ARDENSUITE IDE AND ARDENSUITE SERVER WITH FHIR CONNECTOR 3 

FHIR SERVER 3 

WEB SERVICE CLIENT 3 

FILES 4 

PRELIMINARIES 4 

COMPILING AND UPLOADING MLMS 4 

FHIR CONNECTIVITY 4 

FHIR CONNECTION SETUP 5 

FHIR RESOURCE USE IN MLMS 6 

FHIRWRITESTATIC MLM 6 

FHIRSEARCHQUERY MLM 8 

FHIRREAD MLM 9 

FHIRWRITEDYNAMIC MLM 10 



 

 

page 2 of 10 

Summary 

The aim of this how-to instruction manual is to show how to create, configure, and activate a FHIR 

server connection on an ARDENSUITE Server using a FHIR Connector. Furthermore, we show how to 

use an active FHIR server connection in Arden Syntax Medical Logic Modules (MLMs) in order to read 

data from the connected FHIR server.  

Document Information 

Target Audience 

This instruction manual was created for ARDENSUITE users and developers interested in developing or 

using MLMs in combination with FHIR resources on an ARDENSUITE Server. 

Imprint 

Media owners, editors, publishers: 

Medexter Healthcare GmbH, Borschkegasse 7/5, 1090 Vienna, Austria 

Telephone: +43-1-968 03 24, Fax: +43-1-968 09 22, Website: www.medexter.com 

Email: office@medexter.com 

CEO & Scientific Director: Klaus-Peter Adlassnig, PhD, MSc 

Editorial, project management, coordination: 

Klaus-Peter Adlassnig, PhD, MSc 

Figures: © Medexter Healthcare GmbH 

Use: This document contains the intellectual property of Medexter Healthcare GmbH. The use for 

educational purposes without license and usage fees is permitted. Other kinds of use and reproduction 

are subject to the approval of the media owner. 

Vienna, June 2023 

Version: 1.6 

Download at www.medexter.com 

  

https://www.medexter.com/products-and-services/ardensuite
https://www.hl7.org/fhir/
https://www.hl7.org/fhir/resourcelist.html
https://www.medexter.com/
mailto:office@medexter.com
https://www.medexter.com/


 

 

page 3 of 10 

Introduction 

In this how-to instruction manual, we will guide you step-by-step in the creation, configuration, and 

activation of a FHIR server connection on an ARDENSUITE Server. Furthermore, we illustrate how FHIR 

connections can be used to retrieve data in Arden Syntax via so-called curly brace expressions. 

Examples include: 

• An MLM writing a FHIR patient resource to a connected FHIR server. 

• An MLM searching for all FHIR patient resources with a given identifier. 

• An MLM reading a FHIR patient resource by ID. 

• An MLM reading a FHIR patient resource by ID, modifying a value within the MLM and updating 

the FHIR patient resource on the connected FHIR server. 

Requirements 

For optimal use of this how-to, please install the following software on your computer: 

• The ARDENSUITE IDE and ARDENSUITE Server with FHIR Connector 

• A FHIR server (public FHIR servers available for free) 

• Web service client 

The ARDENSUITE IDE and ARDENSUITE Server with FHIR Connector 

In case you do not have access to the ARDENSUITE IDE or the ARDENSUITE Server with FHIR Connector 

yet, please contact us at support@medexter.com. A 30-day trial version of the ARDENSUITE IDE can 

also be downloaded here. If you need help installing or using the ArdenSuite IDE and Server, please 

visit our ArdenSuite Support Pages. 

FHIR Server 

Any publicly available FHIR server may be used for testing purposes. A list of public FHIR servers can 

be found on the HL7 website.  

Web Service Client 

MLMs deployed on the ARDENSUITE Server are called using web service communication protocols, e.g., 

Representational State Transfer (REST). For instructional and testing purposes, we illustrate these calls 

using a web browser. In this document, we recommend using Postman for all REST communication. 

mailto:support@medexter.com
https://www.medexter.com/products-and-services/ardensuite/ardensuite-trial
https://www.medexter.com/ardensuite_support/pages/index.php
http://wiki.hl7.org/index.php?title=Publicly_Available_FHIR_Servers_for_testing
https://www.getpostman.com/


 

 

page 4 of 10 

Files 

This how-to is accompanied by six files (download the ZIP file from our Learning Center): Five MLM 

files (extension .mlm) and one valid FHIR patient resource XML file (extension .xml): 

• FHIRRead: This MLM reads a FHIR patient resource from a connected FHIR server by patient ID, 

received via REST, and returns the patient name, identifier, status, etc. as a string. 

• FHIRReadSoap: This MLM reads a FHIR patient resource from a connected FHIR server by 

patient ID, received via SOAP, and returns the patient name, identifier, status, etc. as a string. 

• FHIRWriteStatic: This MLM contains a FHIR patient resource as a string and writes it to a 

connected FHIR server. 

• FHIRWriteDynamic: This MLM retrieves a FHIR patient resource from a connected FHIR server 

by patient ID, modifies it, and executes an update on the FHIR server. 

• FHIRSearchQuery: This MLM executes a search query on a connected FHIR server and 

retrieves the query result, which can be iterated inside the MLM. 

• FHIR_Patient_Resource: A valid FHIR patient resource. 

NOTE: The MLM files can be opened using any standard text editor or viewer, but in order to compile 

and upload the MLMs, the ARDENSUITE IDE and ARDENSUITE Server are required. 

Preliminaries 

Before you can start with the actual how-to part of this manual, the MLMs have to be compiled and 

deployed on the ARDENSUITE Server. 

Compiling and Uploading MLMs 

Before an MLM can be called, it first has to be compiled and uploaded onto the ARDENSUITE Server. To 

do this, we refer to the corresponding how-to document (How to Compile, Test, and Deploy MLMs with 

the ARDENSUITE), which can be found here. In order to use the how-to at hand, please compile and 

upload all five MLMs that accompany this document. 

FHIR Connectivity 

In this how-to we guide you step-by-step in the creation, configuration, and activation of a FHIR server 

connection on an ARDENSUITE Server as well as the use of a FHIR server connection in Arden Syntax 

MLMs. 

As the FHIR server used in this how-to is public and not provided by Medexter, we cannot guarantee 

https://www.medexter.com/products-and-services/learning-center#howto
https://www.medexter.com/products-and-services/learning-center


 

 

page 5 of 10 

that the specific FHIR server used in this how-to is active. Therefore, we recommend checking the FHIR 

server before starting the how-to.  

In order to test the availability of the FHIR server used in this document, open the server website (in 

our case http://fhirtest.uhn.ca/) and choose any patient ID. Then use this patient ID to make a simple 

GET REST request in Postman (e.g., http://hapi.fhir.org/baseDstu3/Patient/1576427). 

If the request results in an error, please find a working FHIR server on this list: 

http://wiki.hl7.org/index.php?title=Publicly_Available_FHIR_Servers_for_testing  

FHIR Connection Setup 

In order for MLMs on the ARDENSUITE Server to retrieve data from a FHIR server, a valid FHIR server 

endpoint (REST) has to be configured. After logging into the ARDENSUITE Server frontend, select FHIR 

Connector in the menu bar, and click on the Add Connection button on the bottom left (see 

figure below). 

 

Upon clicking this button, a dialog window will open. Here, please enter the following information: 

• Name: This name will be shown as connection name in the list of connections in the ARDENSUITE 

Server frontend and will also be used as ID within MLMs. Therefore, no blank spaces are allowed. 

• URL: The actual FHIR server URL, e.g.: 

http://fhirtest.uhn.ca/baseDstu3  

• FHIR Login (if required): The FHIR server account username for authentication. On publicly 

available FHIR servers, no username or password is required (leave this field empty). 

http://fhirtest.uhn.ca/
http://hapi.fhir.org/baseDstu3/Patient/1576427
http://wiki.hl7.org/index.php?title=Publicly_Available_FHIR_Servers_for_testing


 

 

page 6 of 10 

• Password (if required): The FHIR server account password for authentication. On publicly available 

FHIR servers, no username or password is required (leave this field empty). 

For this how-to, an example FHIR server connection in the dialog window could look like this: 

 

 

 

 

 

 

 

 

 

Once a connection has been created, it has to be activated. The connection can be activated by clicking 

on the icon in the Active column. This, however, does not verify if the specified server URL indeed 

provides a valid REST API. If a FHIR connection is active, the icon in the Active column turns green 

(see figure below). 

 

FHIR Resource Use in MLMs 

The FHIR connectivity can be tested using MLMs and calling these with either REST or SOAP. For an in- 

depth explanation on how to call MLMs using REST or SOAP, please see our "How to Call Arden Syntax 

MLMs on an ArdenSuite Server Using REST and SOAP” in our Learning Center. 

FHIRWriteStatic MLM 

In this MLM (FHIRWriteStatic.mlm) a static FHIR resource is created on the connected FHIR 

server. The JSON data that needs to be supplied in the Body segment of the REST call are two strings, 

specifying the patient’s given name and family name:  

 

 

 

https://www.medexter.com/products-and-services/learning-center


 

 

page 7 of 10 

{ 

"type": "list", 

"primaryTime": null, 

"applicability": 1, 

"values": 

[ 

  { 

    "type": "string", 

    "value": "hans" 

  }, 

  { 

    "type": "string", 

    "value": "mayer" 

  } 

] 

} 

 

A FHIR patient resource is defined inside the MLM as a string in xml format, setting the specified given 

name and family name: 

FHIRPatient:= "<Patient xmlns=""http://hl7.org/fhir""> 

  <text> 

    <status value=""generated""></status> 

    <div xmlns=""http://www.w3.org/1999/xhtml""> 

      <p>" || givenname || " " || familyname || "</p> 

    </div> 

  </text> 

              

  <identifier> 

    <use value=""usual"" /> 

    <value value=""" || givenname || "." || familyname || """ /> 

  </identifier> 

              

  <name> 

    <family value=""" || givenname || """ /> 

    <given value=""" || familyname || """ /> 

  </name> 

              

  <telecom> 

    <system value=""phone"" /> 

    <value value=""(03) 5555 6789"" /> 

    <use value=""home"" /> 

  </telecom> 

              

  <gender value=""male"" /> 

              

  <birthDate value=""1988-02-18"" /> 

              

  <address> 

    <line value=""3300 Washtenaw"" /> 

    <city value=""Ann Harbor"" /> 

    <state value=""MI"" /> 

    <postalCode value=""48104"" /> 

    <country value=""US"" /> 

  </address> 

</Patient>"; 

This resource can be written to a connected FHIR server using the following statements in the data and 



 

 

page 8 of 10 

action slots: 

Data Slot: destinationFHIRCreate := destination {fhir:create:Patient}; 

Action Slot: write FHIRPatient at destinationFHIRCreate; 

NOTE: The fhir:create keyword specifies that a FHIR resource should be created. Patient (in the 

data slot) specifies the FHIR server endpoint for this resource. 

The FHIR server will assign an ID to the newly created FHIR resource. As the Arden Syntax write 

operator is not specified to return anything, the FHIR server response cannot be read within the MLM. 

If something went wrong (HTTP status of the REST call not 200), the FHIR server response is written 

into the FHIR Connector log file (FHIRConnector.debug.log), which can be found in the 

ARDENSUITE Server’s “logs” folder.  

In order to obtain the ID of the newly created FHIR patient resource, the next MLM executes a search 

query to search for a patient identifier. 

If the MLM call was executed successfully (which – however – does not automatically imply that the 

FHIR server successfully created the patient resource), a JSON/XML object like the following is 

returned: 

{ 

  "type": "string", 

  "applicability": 1, 

  "value": "The write operation of the fhir ressource was executed for hans 

mayer" 

} 

FHIRSearchQuery MLM 

This MLM (FHIRSearchQuery.mlm) is executing a search query on a connected FHIR server, 

searching for a matching patient identifier. The JSON data that needs to be supplied in the Body 

segment of the REST call is a string, specifying the search term: 

{ 

  "type": "string", 

  "value": "hans.mayer" 

} 

 

The FHIR server response is returned to the MLM as an Arden Syntax object representing the exact 

same FHIR xml response. This result object is used inside the MLM to retrieve all patient IDs:  

FHIRBundle := READ {fhir:Patient/_search?identifier=<serachTerm>}; 

 



 

 

page 9 of 10 

patientO := FHIRBundle.entry.resource.Patient; 

if patientO is list then 

  for patient in patientO do 

    fhirId      := patient.id.value; 

    familyName  := patient.name.family.value; 

    givenName   := patient.name.given.value; 

               

    output := output || " id: " || fhirId || " name: " || familyName || " "  

              || givenName || " | "; 

  enddo; 

else 

  fhirId      := patientO.id.value; 

  familyName  := patientO.name.family.value; 

  givenName   := patientO.name.given.value; 

               

  output := output || " id: " || fhirId || " name: " || familyName || " "  

             || givenName; 

endif; 

The REST call result will look something like this (if there are multiple patients with the same identifier): 

{ 

  "type": "string", 

  "applicability": 1, 

  "value": " id: 340 name: hans mayer |  id: 341 name: hans mayer | " 

} 

FHIRRead MLM 

In this MLM (FHIRRead.mlm), a FHIR patient resource is read from a connected FHIR server. The 

JSON data that has to be supplied in the Body segment of the REST call is a number specifying the 

patient resource ID (e.g., use an ID that was found using the FHIRSearchQuery.mlm): 

{ 

"type": "number", 

"value": 340 

} 

The patient resource is read from the FHIR server and transformed into an Arden Syntax object. 

testID:= Argument; 

FHIRPatient:= READ {fhir:Patient/testID}; // Patient/30857 

This object may be used in the MLM to process the retrieved FHIR resource data inside the MLM as 

any other Arden Syntax object: 

familyName  := FHIRPatient.name.family.value; 

givenName   := FHIRPatient.name.given.value; 

identifiers := FHIRPatient.identifier; 

birthday    := FHIRPatient.birthDate.value; 

status      := FHIRPatient.text.status.value; 

The patient’s name, identifier, status, and patient resource description text are returned as a JSON 

object like the following: 

 

 



 

 

page 10 of 10 

 

 

 

{ 

  "type": "string", 

  "applicability": 1, 

  "value": "Name: Max Muster | id text: max.muster | status: generated |      

            pText: Gender:male" 

} 

FHIRWriteDynamic MLM 

This MLM (FHIRWriteDynamic.mlm) executes a read operation on a connected FHIR server, 

trying to retrieve a patient by ID. After retrieving the patient object, it replaces one of the parameters 

with a new value; in our case we update the patient’s given name. The JSON data that has to be 

supplied in the Body segment of the REST call is a list containing a number (patient ID) as the first, and 

a string (edit value) as a second element, please use an ID that was found using the 

FHIRSearchQuery.mlm : 

{ 

"type": "list", 

"primaryTime": null, 

"applicability": 1, 

"values": 

[ 

 { 

 "type": "number", 

 "value": "340" 

 }, 

 { 

 "type": "string", 

 "value": "russ" 

 } 

] 

} 
 

To update a FHIR resource, the following statements are used inside the data and action slots: 

Data Slot: destinationFHIRUpdate := destination {fhir:update:Patient/testID}; 

Action Slot: write FHIRPatient at destinationFHIRUpdate; 

The fhir:update keyword specifies that an existing FHIR resource should be updated. In the action 

slot, a write statement is executed the same way as it would be for a fhir:create. Confirm if the 

connected FHIR server did indeed update the FHIR patient resource by executing the FHIRRead.mlm 

with the corresponding FHIR patient resource ID. 


